
In this assignment, you will solve a Hidden Markov Model problem with code.

Do not include any extra outputs in your �nal answer. If you use print() function for debugging, please run your code without them again before
submitting.

Collaboration

You must answer written questions independently.

Instructions

General Instructions

In an ipython notebook, to run code in a cell or to render Markdown+LaTeX press Ctrl+Enter or [>|] (like "play") button above. To edit any
code or text cell (double) click on its content. To change cell type, choose "Markdown" or "Code" in the drop-down menu above.

Most of the written questions are followed up a cell for you enter your answers. Please enter your answers in a new line below the Answer
mark. If you do not see such cell, please insert one by yourself. Your answers and the questions should not be in the same cell.

Instructions on Math

Some questions require you to enter math expressions. To enter your solutions, put down your derivations into the corresponding cells below
using LaTeX. Show all steps when proving statements. If you are not familiar with LaTeX, you should look at some tutorials and at the examples
listed below between $..$. The OEIS website can also be helpful.

Alternatively, you can scan your work from paper and insert the image(s) in a text cell.

Submission

Once you are ready, save the note book as PDF �le (File -> Print -> Save as PDF) and submit via Gradescope.

Please select pages to match the questions on Gradescope. You may be subject to a 5% penalty if you do not do so.

CS640 Homework 4: Hidden Markov Model

Consider an HMM with the following properties (unknown values are marked with "?").

States:

Initial state probability distribution:

Transition probability matrix A, where each entry is the probability of moving from state to state :

Symbols probability matrix , where each entry is the probability of yielding in state :

Let .

Suppose we observe a sequence

Problem Setup

S = { , , }S1 S2 S3

π = { = 0.3, = 0.5, =?}π1 π2 π3

aij Si Sj

⎡

⎣
⎢
?

?

?

0.5

0.3

0.1

0.4

0.6

0.7

⎤

⎦
⎥

B = P [|]bjk Vk Sj Vk Sj

⎡

⎣
⎢
0.5

?

0.8

0.4

0.3

?

?

0.1

0.1

⎤

⎦
⎥

λ = (A,B,π)

O = V1V3V2V1

Complete the model by �lling the unknown values in the following code block and run the cell. Make sure the outputs are all True.

Q1

 1
 2
 3
 4
 5
 6
 7

import numpy as np

N, M = 3, 3
V = [None, 0, 1, 2] # V[0] = None to align the indices

fill in the blank values for the following three arrays
pi = np.array([0.3, 0.5, 0.2])

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMarkdown
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLaTeX
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Foeis.org%2Fwiki%2FList_of_LaTeX_mathematical_symbols

 8
 9
 10
 11
 12
 13
 14
 15

A = np.array([[0.1, 0.5, 0.4], [0.1, 0.3, 0.6], [0.2, 0.1, 0.7]])
B = np.array([[0.5, 0.4, 0.1], [0.6, 0.3, 0.1], [0.8, 0.1, 0.1]])

O = [V[1], V[3], V[2], V[1]]

print(np.linalg.norm(pi.sum() - 1) < 1e-9)
print(np.linalg.norm(A.sum(axis = 1) - 1) < 1e-9)
print(np.linalg.norm(B.sum(axis = 1) - 1) < 1e-9)

True
True
True

What is ? Answer the question by �nish implementing the Forward Procedure and the Backward Procedure below. Make sure you run
the cell and the �nal answers from the two procedures are identical.

Q2

P(O|λ)

Forward Procedure

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28

T = len(O)
alpha = np.zeros((T, N))

initialization
for i in range(N): # complete this loop
 ################### start of your code ###################
 alpha[0, i] = pi[i] * B[i, O[0]]
 #################### end of your code ####################

inductive steps
for t in range(1, T): # complete this loop
 ################### start of your code ###################
 '''
 for j in range(N):
 alpha[t, j] = alpha[t - 1] @ A[:, j] * B[j, O[t]]
 '''
 # one-liner
 alpha[t] = alpha[t - 1] @ A * B[:, O[t]]
 #################### end of your code ####################

print(alpha)

final answer
################### start of your code ###################
answer = 0 # this variable should store your final answer
answer = alpha[-1].sum()
#################### end of your code ####################
print("P(O | lambda) = " + str(answer))

[[0.15 0.3 0.16]
 [0.0077 0.0181 0.0352]
 [0.003848 0.00384 0.003858]
 [0.0007702 0.00207708 0.00523504]]
P(O | lambda) = 0.00808232

Backward Procedure

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T = len(O)
beta = np.zeros((T, N))

initialization
for i in range(N): # complete this loop
 ################### start of your code ###################
 beta[-1, i] = 1
 #################### end of your code ####################

inductive steps
for t in range(T - 2, -1, -1): # complete this loop
 ################### start of your code ###################
 '''
 for i in range(N):
 beta[t, i] = A[i, :] @ (B[:, O[t + 1]] * beta[t + 1, :])

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 for j in range(N):
 beta[t, i] += A[i, j] * B[j, O[t + 1]] * beta[t + 1, j]
 '''
 # one-liner
 beta[t] = A @ (B[:, O[t + 1]] * beta[t + 1])
 #################### end of your code ####################
print(beta)

final answer
complete this part
################### start of your code ###################
answer = 0 # this variable should store your final answer
'''
for j in range(N):
 answer += pi[j] * B[j, O[0]] * beta[0, j]
'''
one-liner
answer = pi @ (B[:, O[0]] * beta[0])
#################### end of your code ####################
print("P(O | lambda) = " + str(answer))

 [[0.013328 0.013156 0.013352]
 [0.1621 0.1339 0.1253]
 [0.67 0.71 0.72]
 [1. 1. 1.]]
P(O | lambda) = 0.00808232

Suppose we observe a sequence , what is the most likely state sequence? Answer the question by �nish implementing the
Viterbi algorithm in the following code block.

Q3

O = V1V3V2V1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

T = len(O)
delta = np.zeros((T, N)) # stores the optimal probabilities
psi = np.zeros((T, N), dtype = np.int8) # stores the corresponding sources

initialization
for i in range(N): # complete this loop
 ################### start of your code ###################
 delta[0, i] = pi[i] * B[i, O[0]]
 #################### end of your code ####################

inductive steps
for t in range(1, T): # complete this loop
 ################### start of your code ###################
 for j in range(N):
 delta[t, j] = np.max(delta[t - 1] * A[:, j]) * B[j, O[t]]
 psi[t, j] = np.argmax(delta[t - 1] * A[:, j])
 #################### end of your code ####################

print(delta)
print(psi)

backtrack for the optimal path
################### start of your code ###################
optimal_path = [] # this variable should store your final answer
optimal_path = [np.argmax(delta[-1])]
for t in range(T - 1, 0, -1):
 optimal_path.append(psi[t, optimal_path[-1]])
optimal_path.reverse()
################### start of your code ###################
print("Optimal path = " + str(optimal_path))

[[1.500e-01 3.000e-01 1.600e-01]
 [3.200e-03 9.000e-03 1.800e-02]
 [1.440e-03 8.100e-04 1.260e-03]
 [1.260e-04 4.320e-04 7.056e-04]]
[[0 0 0]
 [2 1 1]
 [2 1 2]
 [2 0 2]]
Optimal path = [1, 2, 2, 2]

